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6.1 Gamma Function, Beta Function, Factorials,
Binomial Coefficients

The gamma function is defined by the integral

Γ(z) =
∫ ∞

0

tz−1e−tdt (6.1.1)

When the argument z is an integer, the gamma function is just the familiar factorial
function, but offset by one,

n! = Γ(n + 1) (6.1.2)

The gamma function satisfies the recurrence relation

Γ(z + 1) = zΓ(z) (6.1.3)

If the function is known for arguments z > 1 or, more generally, in the half complex
plane Re(z) > 1 it can be obtained for z < 1 or Re (z) < 1 by the reflection formula

Γ(1 − z) =
π

Γ(z) sin(πz)
=

πz

Γ(1 + z) sin(πz)
(6.1.4)

Notice that Γ(z) has a pole at z = 0, and at all negative integer values of z.
There are a variety of methods in use for calculating the function Γ(z)

numerically, but none is quite as neat as the approximation derived by Lanczos [1].
This scheme is entirely specific to the gamma function, seemingly plucked from
thin air. We will not attempt to derive the approximation, but only state the
resulting formula: For certain integer choices of γ and N , and for certain coefficients
c1, c2, . . . , cN , the gamma function is given by

Γ(z + 1) = (z + γ + 1
2 )z+ 1

2 e−(z+γ+ 1
2 )

×√
2π

[
c0 +

c1

z + 1
+

c2

z + 2
+ · · · + cN

z + N
+ ε

]
(z > 0)

(6.1.5)

You can see that this is a sort of take-off on Stirling’s approximation, but with a
series of corrections that take into account the first few poles in the left complex
plane. The constant c0 is very nearly equal to 1. The error term is parametrized by ε.
For γ = 5, N = 6, and a certain set of c’s, the error is smaller than |ε| < 2 × 10−10.
Impressed? If not, then perhaps you will be impressed by the fact that (with these
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same parameters) the formula (6.1.5) and bound on ε apply for the complex gamma
function, everywhere in the half complex plane Re z > 0.

It is better to implement ln Γ(x) than Γ(x), since the latter will overflow many
computers’ floating-point representation at quite modest values of x. Often the
gamma function is used in calculations where the large values of Γ(x) are divided by
other large numbers, with the result being a perfectly ordinary value. Such operations
would normally be coded as subtraction of logarithms. With (6.1.5) in hand, we can
compute the logarithm of the gamma function with two calls to a logarithm and 25
or so arithmetic operations. This makes it not much more difficult than other built-in
functions that we take for granted, such as sinx or ex:

FUNCTION gammln(xx)
REAL gammln,xx

Returns the value ln[Γ(xx)] for xx > 0.
INTEGER j
DOUBLE PRECISION ser,stp,tmp,x,y,cof(6)

Internal arithmetic will be done in double precision, a nicety that you can omit if five-figure
accuracy is good enough.

SAVE cof,stp
DATA cof,stp/76.18009172947146d0,-86.50532032941677d0,

* 24.01409824083091d0,-1.231739572450155d0,.1208650973866179d-2,
* -.5395239384953d-5,2.5066282746310005d0/

x=xx
y=x
tmp=x+5.5d0
tmp=(x+0.5d0)*log(tmp)-tmp
ser=1.000000000190015d0
do 11 j=1,6

y=y+1.d0
ser=ser+cof(j)/y

enddo 11

gammln=tmp+log(stp*ser/x)
return
END

How shall we write a routine for the factorial function n!? Generally the
factorial function will be called for small integer values (for large values it will
overflow anyway!), and in most applications the same integer value will be called for
many times. It is a profligate waste of computer time to call exp(gammln(n+1.0))
for each required factorial. Better to go back to basics, holding gammln in reserve
for unlikely calls:

FUNCTION factrl(n)
INTEGER n
REAL factrl

C USES gammln
Returns the value n! as a floating-point number.

INTEGER j,ntop
REAL a(33),gammln Table to be filled in only as required.
SAVE ntop,a
DATA ntop,a(1)/0,1./ Table initialized with 0! only.
if (n.lt.0) then

pause ’negative factorial in factrl’
else if (n.le.ntop) then Already in table.

factrl=a(n+1)
else if (n.le.32) then Fill in table up to desired value.

do 11 j=ntop+1,n
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a(j+1)=j*a(j)
enddo 11

ntop=n
factrl=a(n+1)

else Larger value than size of table is required. Actually, this big
a value is going to overflow on many computers, but no
harm in trying.

factrl=exp(gammln(n+1.))
endif
return
END

A useful point is that factrl will be exact for the smaller values of n, since
floating-point multiplies on small integers are exact on all computers. This exactness
will not hold if we turn to the logarithm of the factorials. For binomial coefficients,
however, we must do exactly this, since the individual factorials in a binomial
coefficient will overflow long before the coefficient itself will.

The binomial coefficient is defined by

(
n

k

)
=

n!
k!(n − k)!

0 ≤ k ≤ n (6.1.6)

FUNCTION bico(n,k)
INTEGER k,n
REAL bico

C USES factln
Returns the binomial coefficient

(n
k

)
as a floating-point number.

REAL factln
bico=nint(exp(factln(n)-factln(k)-factln(n-k)))
return The nearest-integer function cleans up roundoff error for smaller values of n and k.
END

which uses

FUNCTION factln(n)
INTEGER n
REAL factln

C USES gammln
Returns ln(n!).

REAL a(100),gammln
SAVE a
DATA a/100*-1./ Initialize the table to negative values.
if (n.lt.0) pause ’negative factorial in factln’
if (n.le.99) then In range of the table.

if (a(n+1).lt.0.) a(n+1)=gammln(n+1.) If not already in the table, put it in.
factln=a(n+1)

else
factln=gammln(n+1.) Out of range of the table.

endif
return
END
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If your problem requires a series of related binomial coefficients, a good idea
is to use recurrence relations, for example

(
n + 1

k

)
=

n + 1
n − k + 1

(
n

k

)
=

(
n

k

)
+

(
n

k − 1

)

(
n

k + 1

)
=

n − k

k + 1

(
n

k

) (6.1.7)

Finally, turning away from the combinatorial functions with integer valued
arguments, we come to the beta function,

B(z, w) = B(w, z) =
∫ 1

0

tz−1(1 − t)w−1dt (6.1.8)

which is related to the gamma function by

B(z, w) =
Γ(z)Γ(w)
Γ(z + w)

(6.1.9)

hence

FUNCTION beta(z,w)
REAL beta,w,z

C USES gammln
Returns the value of the beta function B(z, w).

REAL gammln
beta=exp(gammln(z)+gammln(w)-gammln(z+w))
return
END
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6.2 Incomplete Gamma Function, Error
Function, Chi-Square Probability Function,
Cumulative Poisson Function

The incomplete gamma function is defined by

P (a, x) ≡ γ(a, x)
Γ(a)

≡ 1
Γ(a)

∫ x

0

e−tta−1dt (a > 0) (6.2.1)


